### Properties of the number 6529:

6529 is prime.6529 has 7 antidivisors.

6529 is an emirp in (at least) the following bases: 8, 13, 15, 22, 23, 30, 31, 36, 41, 44, 46, 49, 51, 60, 62, 63, 66, 71, 72, 73, 81, 82, 83, 86, 94, and 99.

6529 is palindromic in (at least) the following bases: 64, and 68.

6529 = 3265

^{2}- 3264

^{2}is the difference of 2 nonnegative squares in 1 way.

6529 is the sum of 3 positive squares.

6529 = 48

^{2}+ 65

^{2}is the sum of 2 positive squares in 1 way.

6529

^{2}is the sum of 2 positive squares in 1 way.

6529 in base 3 = 22221211 and consists of only the digits '1' and '2'.

6529 in base 30 = 77j and consists of only the digits '7' and 'j'.

6529 in base 46 = 33h and consists of only the digits '3' and 'h'.

### The number 6529 belongs to the following On-Line Encyclopedia of Integer Sequences (OEIS) sequences (among others):

Sequence numbers and descriptions below are taken from OEIS.A031936: Lower prime of a difference of 18 between consecutive primes.

A056211: Primes p for which the period of reciprocal = (p-1)/6.

A066540: The first of two consecutive primes with equal digital sums.

A080076: Proth primes: primes of the form k*2^m + 1 with odd k < 2^m, m >= 1.

A111641: Expansion of -(1+x+3*x^2+x^3)/((x^2+4*x+1)*(x^2-2*x-1)).

A142925: Primes congruent to 1 mod 64.

A145048: Primes p of the form 4k+1 for which s=13 is the least positive integer such that sp-(floor(sqrt(sp)))^2 is a full square

A154616: Primes of the form (4*n^2-8*n-9)/3.

A208177: Primes of the form 128n + 1.

A233062: T(n,k)=Number of (n+1)X(k+1) 0..1 arrays x(i,j) with row sums sum{x(i,j), j=1..k+1} nondecreasing, and column sums sum{i*x(i,j), i=1..n+1} nondecreasing

## No comments:

## Post a Comment